Double quarkonium production at hadron colliders

> Chaehyun Yu (Korea University)

In collaboration with Hee Sok Chung, P. Ko, Jungil Lee

Tevatron B physics workshop, KISTI Aug. 24, 2009

Outline

- Heavy quarkonium production
- Single quarkonium production at hadron colliders
- Double quarkonium production at hadron colliders
- Summary

Two sources of heavy quarkonium

Direct production

- production of a $Q\bar{Q}$ pair in the parton process through QCD interactions, which evolves into a heavy quarkonium.
- \bullet includes the feed-down from higher resonance states. $\rightarrow\,$ cannot be distinguished.
- prompt J/ψ .

Production from B meson decay

- $B \to J/\psi K_s, B \to J/\psi \pi, B \to \chi_{cJ} K \cdots$
- includes weak interactions.
- can be identified by measuring the displacement between the primary and the secondary vertices.

We consider only the prompt heavy quarkonium.

Feed down

	S-wave		P-wave	
2S+1LJ	¹ S ₀	³ S ₁	${}^{1}P_{1}$	${}^{3}P_{J,(J=0,1,2)}$
charmonium	η_c	J/ψ	h _c	χ_{cJ}
bottomonium	η _b	Y	h _b	χ_{bJ}
c + anti-b	B _c	B_c^*		

J/ψ production at the Tevatron

- (a) leading-order contributions in α_s .
- (b) some higher-order contributions through the fragmentaion approximation.

Color-octet revolution

• In NRQCD, the $Q\bar{Q}$ pair produced in a color-octet state. The pair can be evolved into a color-singlet quarkonium by emitting soft gluons.

 $\begin{aligned} |J/\psi\rangle &= O(1) |Q\bar{Q}({}^{3}S_{1}^{[1]})\rangle \\ &+ O(v) |Q\bar{Q}({}^{3}P_{J}^{[8]})g\rangle + O(v^{2}) |Q\bar{Q}({}^{1}S_{0}^{[8]})g\rangle \\ &+ O(v) |Q\bar{Q}({}^{3}S_{1}^{[8]})gg\rangle + O(v^{4}). \end{aligned}$

• The color-octet mechanism could resolve the long-standing IR divergence problems in the P-wave quarkonium decays.

 $IR_{CS} + IR_{CO} = 0.$

Color-octet J/ψ production at the Tevatron

• (c) ${}^{1}S_{0}$, ${}^{3}P_{J}$ octet, (d) ${}^{3}S_{1}$ octet production.

- can be explained by the t-channel gluon exchange or gluon fragmentation.
- The color-octet matrix elements are fitted to the data.

$\underline{\Upsilon}$ production at the Tevatron

• Similar to the J/ψ production, but in this case, $v^2 \sim 0.1$ and the color-octet contributions are much suppressed.

• The resulting velocity scalings of the matrix elements are close to the predictions in NRQCD.

Success of the color-octet mechanism (?)

- The single J/ψ production at the Tevatron is a benchmark for the coloroctet matrix elements.
- need to test the color-octet matrix elements for various processes.

• favor the color-octet mechanism.

Polarization of J/ψ at the Tevatron Run I

• The color-octet dominance at large transverse momentum implies that the J/ψ is produced with a highly transverse polarization.

- agrees in the intermediate region.
- disagrees at the high transverse momentum.

 $\alpha =$

 $\sigma_T + 2\sigma_L$

Polarization of J/ψ at the Tevatron Run II

- Prompt polarization does not show the trend to the transverse polarization.
- CDF Run II data do not agree with CDF Run I data as well as NRQCD predictions.

NLO corrections to the color-singlet contributions

- Large NLO corrections.
- Incomplete NNLO corrections.
- Improved in shape and size, but still less than data.
- Color-octet contributions should be suppressed, but are they negligible?

$\psi(2S)$ production at the Tevatron

a small gap at large p _T.

- explained by NNLO
- feed-down, color octet? Lansberg, QWG'08

• could not explain the data for the single quarkonium production rate and its polarization with only the color-singlet contributions.

- now the game for the production rate was moved to fill up the gap of 3 or 4 factors, which was of about order 2.
- the polarization should be moved to the unpolarized region.
- still room for the color-octet contributions.
- need to find the process in which the color-octet contributions are indeed dominant.
- Tevatron or LHC may open the double quarkonium production.
 - color-octet mechanism, relativistic corrections.

- need further test for the color-singlet and color-octet mechanisms in NRQCD.
- originally predicted to test the color-octet mechanism at the Tevatron.
- recently extended to the LHC.
- clean signals : 4 muon events for $J/\psi J/\psi \Upsilon, \Upsilon \Upsilon$ production.
- $gg \rightarrow J/\psi \chi_c$ and $gg \rightarrow J/\psi \eta_c$ processes are forbidden in the color-singlet model, but allowed in the color-model.

Color singlet

- $gg \rightarrow Q_1Q_2$ dominates over $q\bar{q} \rightarrow Q_1Q_2$.
- 31 Feynman diagrams for $J/\psi J/\psi$ production.

Color octet

gluon fragmentation approximation

$$d\hat{\sigma}_{Q_1+Q_2} = \int_0^1 dz_1 \int_0^1 dz_2 D_{g \to Q_1}(z_1, m_{Q_1}) D_{g \to Q_2}(z_2, m_{Q_2}) d\hat{\sigma}_{gg}(E_1/z_1, E_2/z_2),$$
¹⁷

 $D_{g \to \mathcal{Q}}(z, \mu^2) = \sum_n d_{g \to n}(z, \mu^2) \langle \mathcal{O}_n^H \rangle.$

 $d_{g \to \underline{8}^3 S_1} = \frac{\pi \alpha_s(2m_Q)}{24m_Q^3} \delta(1-z).$

Cross section for $J/\psi J/\psi$ production at the LHC

Qiao,Sun,Sun(0903.0954)

a : color-octet (CO) b : unpolarized color-singlet (CS) c,d,e : polarizated color-singlet (CS)

	$\sigma(\text{events})$	$p_{Tcut}=3 \text{ GeV}$	$p_{Tcut}=4 \text{ GeV}$	$p_{Tcut}=5~{\rm GeV}$	$p_{Tcut}=6~{\rm GeV}$	$p_{Tcut}=7~{\rm GeV}$
cs -	_ 	5.83 pb(58324)	1.74 pb(17425)	0.56 pb(5607)	0.20 pb(1981)	$0.077 \mathrm{pb}(767)$
		2.55 pb(25543)	0.83 pb(8262)	0.28 pb(2786)	0.10 pb(1014)	0.040 pb(401)
	⊥	3.95 pb(39425)	0.94 pb(9445)	0.24 pb(2380)	0.066 pb(660)	0.020 pb(204)
	tot	12.33pb(123319)	3.51 pb(35131)	1.08 pb(10773)	0.37 pb(3656)	0.14 pb(1372)
co-[$\perp_8\perp_8$	2.90 pb(29022)	1.82 pb(18205)	1.15 pb(11461)	0.74pb(7399)	0.49 pb(4925)

Cross section for double quarkonium production

$P_T > 3 \text{ GeV}$	CTEQ6L1		CTEQ5L		
Final States	$\sigma_{\text{Tevatron}}[nb]$	$\sigma_{\rm LHC}[nb]$	$\sigma_{\text{Tevatron}}[nb]$	$\sigma_{\rm LHC}[nb]$	
$\eta_c \eta_c$	4.99×10^{-3}	4.10	4.35×10^{-3}	4.2	
$J/\psi J/\psi$	8.46×10^{-2}	4.25	7.49×10^{-2}	4.6	
$\eta_b \eta_b$ YY			2.66×10^{-3} 1.74×10^{-4}	1.16×10^{-2} 2.46×10^{-2}	
$B_c \bar{B}_c$	3.86×10^{-3}	$2.72 imes 10^{-1}$			
$B_c \bar{B}_c^*$	$1.00 imes 10^{-3}$	$8.37 imes 10^{-2}$			
$B_c^* \bar{B}_c^*$	8.23×10^{-3}	$7.08 imes 10^{-1}$			

- Color-singlet contributions dominate at low P_{T} .
- Color-octet contributions may dominate at high P_T , but they might be much suppressed if the color-octet matrix elements are resized according to the recent works.
- We suggest the $J/\psi + \Upsilon$ production at the hadron colliders.

 $J/\psi + \Upsilon$ production at the hadron colliders

Color octet

• Gluon fragmentation approximation may be efficient.

Color singlet

• Color-singlet contributions are of order α_s^6 .

$J/\psi + \Upsilon$ production at the hadron colliders

• The cross section for the color-octet pair can be obtained by the gluon fragmentation approximation.

$$\sigma_{\text{Tevatron}} \text{ [pb] } \sigma_{\text{LHC}} \text{ [pb]}$$
$$J/\psi \Upsilon \quad 1.0 \qquad 90$$

• Include the feed-down effects.

	$\sigma_{ m Tevatron}$	[pb]	$\sigma_{ m LHC}$	[pb]
$J/\psi\Upsilon$	4.5	392		

- Integrated luminosity : Tevatron \sim 4 fb⁻¹, LHC \sim 100 fb⁻¹.
- might be measurable at the Tevatron and LHC.

• If we cannot observe these events at this level, we may conclude that the color-octet mechanism is overestimated.

Summary

• The production of a heavy quarkonium at the Tevatron cannot be explained by the color-singlet model.

- The polarization problem of a heavy quarkonium at the Tevatron is still open.
- require reducing the theoretically errors and higher-order corrections to the feed-down effects as well as the direct production of a heavy quarkonium.
- require tests of NRQCD for various processes.
- Double quarkonium production at hadron colliders may provide another test ground for NRQCD.
- $J/\psi + \Upsilon$ production may be used to test the color-octet mechanism, but the estimate based on the gluon fragmentation approximation may be overestimated. Full QCD calculation for this process is begin carried out.